GLOSSARY

SECTION I. ABBREVIATIONS

A	— surface area as used to determine storm drainage	Q_5	— $N_{ud}F_5$ rate from flusher nozzles in prewash).
	flow.	Q_6	- N ₁₂ F ₁₂ (flow rate from flusher nozzles in wash
В	 number of times a bath is filled from the water supply basin per wash period. 		stations).
BOD	biochemical oxygen demand.	Q_7	 N_{int}F_{int} (flow rate from nozzles at interior wash stations).
C	— runoff coefficient used in determining storm	Q_8	 N_vF_v (flow rate from nozzles at yard hydrants).
	drainage flow.	Q_9	— C_pI A_p (stormwater flow rate from the Rational
CVWF	— Central vehicle wash facility.	O	Method on paved area).
D	— drain time for the bath(s) at a CVWF.	Q_{10}	— C _b I A _b (stormwater flow rate from Rational
EPA	— Environmental Protection Agency.	0	Method on basins).
F_c	— climatic factor.	Q_{over}	 overflow rate; average rate of wash water flow into a sediment basin.
$F_{\scriptscriptstyle (i)}$	— flow rate location.	S_{i}	— soiling index.
gpm	— gallons per minute.	\mathbf{S}_{t}	— soil type number.
i	— demand location.	SS	— suspended solids.
I	— rainfall intensity of design storm (10-year, 1-hour	TDS	— total dissolved solids.
	storm).	TMP	— transportation motor pool.
K	— cleanup time.	Ts	— length of design storm.
Lpm	— liters per minute.	T_{t}	— wash period + cleanup $(T_w + K)$.
mgL	— milligrams per liter.	$T_{\rm w}$	— wash period.
mgd	— million gallons per day.	$U_{\rm f}$	— usage factor.
Nint	— number of interior wash nozzles.	V_1	 V_B (volume treated from bath prewash).
NPDES	S — National Pollutant Discharge Elimination System.	V_2	 — Q₂T_t (volume treated from nozzles in prewash).
$N_{\rm wc}$	— number of nozzles used in a prewash.	V_3	— Q ₃ T _t (volume treated from nozzles at wash sta-
$N_{\rm st}$	— number of nozzles in a wash station.		tions).
$N_{\rm tl}$	 number of flusher nozzles used in trenches in the vehicle preparation area. 	V_4	 — Q₄K (volume treated from preparation area trench flushers).
N_{t2}	 number of flusher nozzles in trenches in the wash stations. 	V_5	— Q_5K (volume treated from bath prewash trench flushers).
N_{ud}	 number of flusher nozzles in u-drains in the prewash. 	V_6	— Q_7T_w (volume treated from washstation area trench flushers).
N_v	— number of yard hydrants.	V_7	— Q_7T_w (volume treated from interior wash stations).
•		V_8	— Q_8K (volume treated from yard hydrants).
pН	— hydrogen ion concentration.	V_9	 — Q₉T₈ (volume treated from stormwater).
Q	— volume per unit time of flow.	$V_{\rm avg}$	— average volume.
Q_1	— V_B/D (flow rate from bath drainage).	$V_{\scriptscriptstyle B}$	— volume of tracked bath, plus the volume of dual-
Q_2	— $N_{wc}F_{wc}$ (flow rate from nozzles in prewash).		purpose bath.
Q_3	— $N_{st}F_{st}$ (flow rate from nozzles at wash stations).	V_{max}	— maximu _{m volume} .
Q_4	— $N_{t1}F_{t1}$ (flow rate from flusher nozzles in preparation area).	V_{sed}	 sediment volume per year divided by number of cleanings per year.

SECTION II. TERMS

Assembly area

Paved space located after the wash stations to allow replacement of interior items, drying, assembly of vehicles into units, and final inspection prior to exiting the CVWF.

Bentonite

Clay with a high content of the mineral montmorillonite group. Characterized by high adsorption and very high volume changes with wetting and drying.

Biological treatment

Process in which bacteria and other microrganisms use waste constituents as a food source; results in the breakdown of complex organic materials into simple, more stable sub-stances.

Bypass lane

Driving lane reserved for vehicles in the CVWF to go past the prewash basin and/or the wash stations to expedite forward movement.

Cantonment

Developed portion (city-like area) of a permanent military installation.

Central vehicle wash facility

Structure designed specifically to clean large numbers of tactical or transportation motor pool vehicles.

Chemical oxygen demand

Standard laboratory procedure for measuring the oxygen required for oxidation of carbonaceous (organic) material in wastewater.

Cleanup time

Period required to clean a CVWF, including drainage and cleaning of the prewash bath.

Cohesive soil

Fine-grained soil that sticks together, such as a clay or silt.

Collection system

Network of underground conduits and appurtenances that receives and conveys wastewater.

Colloids

Microscopic suspended particles that do not settle in a standing liquid and can be removed only by coagulation or biological action.

Control building

Structure at a CVWF that provides the operator a central location to observe the washing operations and regulate pumps, valves, and other equipment.

Detention time

Theoretical period that it takes a particle of matter to flow through a tank or basin.

Dissolved solid

Solid material remaining in a wastewater after filtering; determined by specific tests.

Dosing tank

Receptacle that automatically and hydraulically empties itself each time it is filled to capacity.

Drainage area

Rainfall catchment area common to a single runoff point.

Drainage structure

Construction used to collect and/or divert surface waters to a collection system; includes inlets, trench drains, catch basins, and manholes.

Dual-purpose lab

Area of a prewash facility that serves both wheeled and tracked vehicles.

Effective depth

Usable depth of sediment basin and/or lagoon for treatment or settling purposes, after deducting the depth reserved for storage of solids and freeboard allowance.

Effluent

Liquid flowing out of a reservoir, basin, tank, or other container.

Energy dissipator

Structure used to dampen erosion potential of a flowing body of water by reducing its forward velocity.

Equalization basin

Receptacle used to dampen variations in the flow of water.

Evaporation rate

Rate at which water becomes a vapor and is lost from a body of water.

Filter charge

Total volume of water necessary to flood the surface of a filter to a specific depth.

Filter medium

Granular material (sand and/or gravel) in a filter through which water passes.

Filtration

Unit operation in which solid or colloidal material is separated from a liquid by movement through a granular or porous material such as sand.

Flexor

Device installed in the bottom of a water bath at a prewash facility for causing the wheels or tracks of a vehicle to move up and down (flex) to assist in removing dirt from the vehicle.

Flushers

Devices such as water sprays that increase water flow and velocity to prevent solids deposition or to remove deposited solids in a pipe, channel, or other conduit.

Freeboard

Distance in elevation from the maximum water surface of a tank or basin to the top of its walls or overflow.

Grade

Inclination or slope of a surface in terms of a ratio or percentage of vertical rise to horizontal distance.

Grease

General term used to describe the lubricants applied to tactical and TMP vehicles.

TM 5-814-9

Hardstand

Impervious surface, either bituminous or concrete, used as a pavement for pedestrian and/or vehicular traffic.

Hydraulic loading

Volume of a liquid per unit time applied to a given system or treatment process.

Hydrogen ion concentration (ph)

Measure of the number of hydrogen ions in a solution indicting acidity/alkalinity.

Impervious

Term used to describe the condition in which water or some other fluid cannot easily pass through a material such as soil.

Inflow

Water or wastewater entering a basin, pond, channel, or other storage or collection facility.

Influent

Liquid flowing into a container, basin, or tank.

Interior wash

Low-pressure, low-flow volume of water used to clean the interior of tactical vehicles, such as truck beds and cab areas.

Intermittent sand filter

Filter system with a granular medium (sand and/or gravel) which is flooded at given time intervals with a water or wastewater for treatment.

Lagoon

Pond-like body of water used to treat industrial, commercial, and sanitary wastewaters.

Loading

Rate at which a filter charge is applied to a filter.

Makeup water

Water added to a system or process to compensate for the amound of water lost due to leakage, percolation, evaporation, release, overflows, usage, or similar action.

Manhole

Structure, usually located at the junction of two or more underground pipes, that-allows access to pipes for inspection and maintenance.

Oil skimmer

Device used for removing oil and grease from a water surface.

Percolation

Downward movement of a liquid through a soil.

Permeability

Term describing the ability of water to move through a soil when the soil is saturated.

Pond

Engineered impoundment containing raw or partially treated wastewater in which aerobic and/or anaerovic stabilization occurs (also see lagoon).

Porosity

Ratio, usually expressed as a percentage, or the volume of voids in a given soil mass to the total volume of the soil mass.

Potable water

Water supply that is safe for human consumption.

Preparation area

Paved area for troops to remove trash from vehicle interiors, plug drain holes, open bilge pump discharge lines, and other tasks prior to the prewash or wash facilities.

Primary treatment

The first phase in treating wastewater in which all debris and settleable solids, along with floating materials (e.g., oil and grease) are removed.

Roller-compacted concrete

A stiff concrete, low in water content which is placed with a paver-compactor and then rolled.

Sanitary plant

Wastewater treatment plant designed to process a municipal waste (sanitary, commercial, or industrial).

Secondary treatment

Second phase in wastewater treatment in which the major portion of the suspended solids and a portion of dissolved solids are removed by physical and/or biological means.

Sediment basin

Receptacle immediately downstream of the wash stations and prewash, if provided, designed to settle and contain solids from a CVWFs wastewater.

Settling test

Assay to determine the rate at which a particular material settles from a quiescent water.

Staff gauge

Device for measuring water depth in a basin, pond, or lagoon.

Stop

Device used to limit the movement of a piece of equipment.

Surface water

Water found on the surface of the ground due to rainfall or snow melt; includes incidental water (e.g., that dripping from vehicles).

Suspended solids

Weight unit of measurement of the nonsettling particles or solids in a dispersed state in the wastewater.

Total dissolved solids

Weight unit of measurement indicating the sum of all dissolved solids (volatile and nonvolatile) in a water or wastewater.

Transportation motor pool

Facility that provides and maintains commercial vehicles for daily use at an installation (cars, buses, trucks, etc.).

Turbidity

Measure of water clarity.

Usage factor

Estimated percentage of time that the maximum water usuage condition will exist at a CVWF.

Valve box

A premanufactured structure made of concrete, steel, plastic, or fiberglass, which is placed around an underground valve.

Wash period

Time during which vehicles are washing at a CVWF.

Wash station

Area of a CVWF where high-pressure, high-flow volumes of water are supplied to hoses for cleaning vehicles.

Wastewater treatment plant

Facility designed to process sanitary, commercial, and/or industrial wastewater.

Water cannon

Device used to direct a large volume of water, at high pressure, toward an object.

Water supply basin

Receptacle at a CVWF that holds treated water for reuse at prewash and wash stations.

Weir

Usally a flat piece of metal with a characteristic shape (rectangular, V-notched, etc.) which is inserted into flowing Water for determining the flow rate.